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Abstract 
 

This research addresses the issue of incorporating demand uncertainty 

in the strategic design of relay networks for truckload transportation.  An 

existing composite variable mathematical model for the design of hybrid 

relay networks is extended by developing its robust counterpart.  The 

proposed approach considers uncertainty in the number of truckloads to be 

dispatched between a pair of nodes in the network which is characterized 

by a symmetric interval around the expected demand value.  A two-step 

heuristic approach is used to solve the robust model.  Several numerical 

experiments are carried out to study the differences between the solutions 

obtained with the robust approach and those generated by the existing 

deterministic model.  In particular, we were interested in understating how 

different levels of uncertainty affect total cost of the system and the 

configuration of the resulting networks.  At the end, numerical results are 

discussed and directions for future research are presented.    

  

1 Introduction 
 

Full truckload (TL) transportation is one of the key modes of transportation of goods in 

the United States accounting for 71% of the total value and 69% of the total weight 

transported  [1].  In the traditional Point-to-Point (PtP) dispatching method used by TL 

carriers, a single driver delivers a load from origin to destination.  This dispatching 

method results from carriers attempting to minimize empty repositioning movements 

between different load deliveries to benefit from high vehicle utilization.  As a result of 

this objective and since it is difficult to find appropriate back-haul trips to get drivers 

back to their home domiciles, drivers are usually assigned to a series of new load pick-

ups originating in the vicinity of previous drop-offs.  The resulting tours keep drivers on 

the road for an average of two to three weeks at a time which significantly affects the 

perception of low quality of life for drivers and motivates them to quit [2].  The resulting 
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high driver turnover and the lack of qualified drivers are major issues that historically 

affect the TL industry as described in [3]. 

As an alternative to PtP dispatching for TL transportation, relay networks have been 

studied given their potential to produce more regular routes for the drivers and to 

facilitate reducing the length of their tour lengths, so that drivers are able to return back 

to their home domiciles more frequently [4], [5], [6], [7].  In this alternative configuration, 

each load is carried by several drivers that exchange trailers at relay points (RPs) or hubs.  

Two types of drivers are in charge of carrying loads between non-RP nodes and RPs 

(local drivers) and between RPs (lane drivers), respectively.  Limitations on the distances 

that local and lane drivers are allowed to travel result in more regular routes for them as 

compared to traditional PtP movements.  Figure 1 shows a graphical representation of a 

RN that is used to transport a load from node i to node j using three RPs. 

 

 
Figure 1: Example of a Relay Network for TL Transportation. 

Several studies have explored the integrated Truckload Relay Network Design 

(TLRND) problem considering both strategic and tactical decisions while satisfying 

operational constraints.  Mainly, these studies have focused on developing mathematical 

models and solution approaches for this problem and its extensions such as the work 

completed by Üster and Maheshwari [4], Üster and Kewcharoenwong [5], Vergara and 

Root [6], Vergara and Root [7] and Melton and Ingalls [8].  

However, most of the previous studies are restricted to deterministic models of the 

TLRND problem and use the best estimates of the design parameters.  In reality, costs, 

demand, travel times and other parameters of the model might be highly uncertain.  We 

developed a mathematical formulation that is solved to obtain a relay network design that 

remains feasible for all possible demand realizations and represents a robust solution that 

is close to the best (i.e., deterministic) solution for almost any demand value.  As such, 

we are able to overcome some of the limitations of existing deterministic modeling and 

solution approaches to evaluate real world problems.  

In this paper, we present a robust counterpart to the integer programming model 

proposed by Vergara and Root [7] for the design of hybrid relay networks in order to 

handle truckload demand fluctuations between a given set of origin-destination (O-D) 

node pairs in the network.  In reality, a large fraction of the demand for TL carriers is 

only observed a few days in advance.    This robust counterpart was developed using the 

robust optimization approach presented by Bertsimas and Sim [9] which was applied 

assuming that load demand between O-D pairs fluctuates in bounded and symmetric 
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intervals.  To the best of our knowledge, this is the first time that a robust optimization 

approach is applied to the TLRND problem or its extensions.  Numerical experiments of 

the robust optimization model and solution approach used in this research were 

completed and the results were compared to solutions obtained for the deterministic case 

to determine the effect of demand uncertainty in solution cost and the design of the 

network.  In addition, we explored how different levels of protection against uncertainty 

affect the characteristics of the robust solutions and the computational speed of our 

modeling and solution approach.   

The remainder of this paper is organized as follows.  Section 2 includes a review of 

related literature and a formal definition of the Robust Truckload Relay Network Design 

Problem with Mixed Fleet Dispatching (R-TLRN-MD) problem.  Section 3 presents the 

robust optimization framework that was applied in this research and describes the 

solution approach used to solve R-TLRND-MD.  The computational experiments and 

performance evaluation of the robust model as it is compared to the deterministic case are 

presented in Section 4.  Finally, concluding remarks and future research directions are 

discussed in Sections 5 and 6, respectively. 

 

2 Problem Description  
 
2.1 Literature Review 

 
2.1.1 Relay Networks for TL Transportation 
 
The fact that more regular tours and lower driver turnover rates exist in the Less-than-

Truckload (LTL) industry, in which hub-and-spoke (H&S) networks are used, motivated 

researchers and carriers to investigate the potential benefits of implementing such 

networks for TL transportation.  The evolution of the research on several H&S-type 

configurations for TL transportation has resulted in several proposed alternative 

dispatching methods which have been described in the existing literature.  A significant 

number of these research studies have used simulation-based approaches to investigate 

the benefits of such structures for TL transportation while a more recent group of studies 

deals with the development of mathematical modeling and solution approaches for the 

strategic design of relay networks for TL transportation. 

This literature review focuses on research studies that are related to the design and 

evaluation of mixed fleet configurations where some of the loads are transported through 

the RN while the rest of the loads are still transported PtP.  Such configurations are of 

interest to carriers and researches given their potential for actual implementation in 

practice.  Taylor and Whicker [10] proposed an integer programming model and heuristic 

solution approach for the design of distributed manufacturing networks that combine PtP 

and RN movements in an effort to regularize TL driving routes.  Their model creates 

partial networks in which nodes with high density of transactions are used as part of a 

relay network while the loads associated with other nodes are moved PtP.  In another 
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study, Liu et al. [11] compared the performance of mixed truck delivery systems against 

pure PtP and pure H&S networks.  They developed a heuristic model and evaluated the 

savings on total travel distance as their only performance measure.  According to their 

experimental results, the mixed delivery system outperformed the pure PtP and pure H&S 

networks and lead to 10% savings in total travel distance. 

The incorporation of relays points in TL transportation has also been studied by Hunt 

[12] and Ali et al. [13] who developed algorithmic approaches to locate RPs to serve loads 

in a TL transportation network.  Tsu and Agarwal [14] developed linear programming 

models for the design of networks with and without relay points in order to find 

regularized private fleet tours that minimize the cost of distribution.  They found a 

significant reduction in the number of drivers that are needed and shorter tours as a result 

of utilizing relays in the network.  

The first mathematical formulation for the TLRND problem was developed by Üster 

and Maheshwari in [4].  They developed a mixed integer programming model that 

integrates the multi-commodity flow network and hub location models to determine the 

location of RPs and the selection of routes for the loads through the RN.  Their 

formulation includes constraints that restrict the distances for local and lane movements 

as well as limitations on out-of-route miles and equipment imbalance at the nodes in the 

network.  However due to tractability issues, the constraints on out-of-route miles and 

equipment imbalance were later relaxed to obtain solutions for larger instances using a 

heuristic approach based on tabu search.  This original formulation was slightly modified 

in [5] by Üster and Kewcharoenwong and solved to optimality for instances of up to 80 

nodes.  A Bender’s decomposition-based approach was used to obtain high quality 

solutions satisfying the operational constraints that were relaxed in [4].  The authors 

emphasized the potential benefit of integrating a partial RN design along with PtP 

dispatching to minimize the total installation and transportation cost of the RN.  

In [6], Vergara and Root developed an alternative formulation for TLRND using 

composite variables that represent feasible truckload routes.  In this approach, restrictions 

on local and lane distance movements, out-of-route miles and number of RPs allowed to 

be visited are considered when generating feasible routes to be used in an integer 

program that minimizes the total cost of transportation and installation of RPs.  The 

authors used an exact solution method based on branch-and-cut to solve networks with 50 

nodes.  For larger instances, a heuristic approach with a reduced number of composite 

variables is used to obtain high quality solutions for problems with up to 150 nodes.  A 

test case with real data from a major TL carrier is also solved using the heuristic approach 

in reasonable computation time.  

Later, Vergara and Root [7] extended their composite variable model to strategically 

design mixed fleet configurations of TLRND integrating PtP and RN shipments.  The 

selection of the dispatching mode was incorporated as an additional decision variable in 

their formulation and additional operational constraints associated with this alternative 

configuration were also included.  A branch-and-cut approach was also used to solve the 

model for 50 node networks and a heuristic approach was used to efficiently solve larger 

instances up to 150 nodes within reasonable computational time.  The experimental 
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results obtained in this research proved the benefits of a mixed fleet dispatching system in 

TL trucking over pure PtP and RN-only configurations. 

More recently, Melton and Ingalls [8] developed a mixed integer quadratic program to 

model a highway transportation network with the goal of locating relay points within a 

TL dispatching system.  Their objective function included annual transportation cost, 

annual fixed amortized cost of building relay points, annual driver turnover cost, and 

truck and trailer depreciation cost.  The experimental results in [8] also showed a better 

performance of the relay network as compared to the PtP method in providing suitable 

driver work hours and driver home time. 

Without attempting to be comprehensive, Table 1 shows a summary of existing 

research on the strategic design of relay networks for TL transportation. 

 

Table 1: Summary of Relay Network Design for TL Transportation Research. 

Study Contribution 

Taylor and Whicker [10] 
Optimization model and heuristic approach for 

distributed manufacturing networks 

Liu et al. [11] 
Heuristic model to compare mixed truck delivery 

against pure PtP and pure H&S 

Hunt [12] 
Algorithmic approach to locate RPs and create 

shortest path routes 

Ali et al. [13] 
Heuristic models for H&S network design to minimize 

the number of RPs 

Tsu and Agarwal [14] 
Linear programming models for network design with 

and without relay points in private fleets 

Üster and Maheshwari [4] 
Integer programming model for multi-zone 

dispatching 

Üster and Kewcharoenwong [5] 
Bender’s Decomposition-based algorithm to obtain 

optimal solutions for Üster and Maheshwari [4] 

Vergara and Root [6] 
Composite variable model for TLRND and heuristic 

solution approach 

Vergara and Root [7] 
Composite variable model for TLRND with mixed 

fleet dispatching incorporating PtP and relay network 

Melton and Ingalls [8] 
Mixed integer quadratic programming model for 

TLRND 

 

2.1.2 Robust Optimization in Network Design and Transportation Planning 
 
In [15], Rosenhead et al. analyzed the long-term decision making nature of strategic 

planning problems and emphasized that finding an optimal solution for such problems is 

not always an appropriate approach for decision making.  They suggested that, in 

practice, finding flexible solutions that are near-optimal for a wide variety of conditions 

of uncertain inputs is sometimes more desirable for managers, so that they have feasible 

alternative plans available when making strategic decisions.  Based on this, several 

approaches have been developed to incorporate uncertainty in mathematical models used 

for decision making.  For example, Bertsimas and Sim [9] introduced a robust 
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optimization approach for discrete optimization and network flow problems in which the 

level of conservatism against uncertainty that is incorporated in the model is controllable 

in terms of the number of coefficients that are allowed to change value due to uncertainty.  

In their approach, only a subset of the coefficients might be assumed to take on their 

worst possible values as opposed to enforcing this condition for all coefficients which is 

very common in other robust optimization approaches in the literature (such as the 

method presented by Soyster in [16]).  Bertsimas and Sim [9] provided a comprehensive 

description of how to address data uncertainty for coefficients in the objective function 

and constraints of the optimization model, and presented efficient procedures to deal with 

such mathematical models.   

Reviewing the literature, it is clear that robust optimization approaches have been 

used in several network design and transportation planning problems in the past.  

Gutierrez et al. in [17] obtained robust designs for the general uncapacitated network 

design problem involving considerable uncertainty in the input data.  Their approach 

considered using an algorithm to generate network designs that lie within p% of the 

optimal solution for any realization of the uncertain input parameters.  

  Ukkusuri and Mathew [18] introduced a formulation for a strategic robust network 

design problem (RNDP) that is characterized by a weighted objective function of the 

expected value and the standard deviation of the total system travel time under demand 

uncertainty.  The authors developed a genetic algorithm-based methodology to solve the 

RNDP and obtained near-optimal solutions.  Mudchanatongsuk et al. [19] studied the 

problem of robust capacitated network design with single origin and destination per 

commodity.  In this research, transportation cost and demand are allowed to fluctuate in 

independent closed convex uncertainty sets.  The authors developed an approximation of 

the adjusted RNDP formulation and showed that the approximate adjusted robust 

counterpart of the arc-flow network problem is equivalent to the robust counterpart of the 

path-flow network formulation which has a tractable linear relaxation that is solved using 

a column generation procedure. 

In another study related to transportation planning, List et al. [20] studied the fleet 

sizing problem under uncertainty on the demand and the conditions of productivity under 

which they operate.  The proposed model accounted for a quantification of the intuitive 

tradeoff between expected cost of owning more vehicles and the risk of being out of 

efficient vehicles.  More recently, Erera et al. [21] proposed a robust optimization 

approach for the empty repositioning problem in LTL transportation when resource net 

supply at each time-space node is uncertain.  Their formulation considered the 

minimization of flow cost under network flow balance constraints and decisions about 

empty flows on each arc.  They applied the uncertainty budget approach of Bertsimas and 

Sim [9] and surveyed three types of robust repositioning problems. 

While the TLRND problem is classified as a strategic decision problem, the majority 

of the research in this area has failed to explicitly incorporate the existing uncertain 

nature of the design parameters in the mathematical formulation of this problem.  The 

application of robust optimization approaches to other network design and transportation 

planning problems with uncertain input data demonstrates the capability of this approach 
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to capture parameter uncertainty within the TLRND problem as well.  Thus, the main 

contribution of this study is to develop a robust optimization approach for the solution of 

the TLRND problem when a mixed fleet configuration that includes PtP and RN 

dispatching is used. 

 

2.2 Problem Definition 
 
In the Robust Truckload Relay Network Design with Mixed Fleet Dispatching (R-

TLRND-MD) problem, loads can be dispatched either through the relay network or PtP 

in a hybrid dispatching system.  In this problem, we aim to minimize the total cost of 

installation of RPs and transportation of truckloads subject to operational constraints by 

determining the number and location of RPs, and selecting dispatching modes and routes 

for the loads.  A schematic of a hybrid network is shown in Figure 2.  This hybrid 

network configuration involves three types of drivers; local drivers who carry RN loads 

between nodes and RPs, lane drivers who are in charge of regular movements between 

RPs for RN loads, and PtP drivers who are still dispatched using the traditional method.  

There are limitations for the distances traveled by the first two types of drivers with the 

goal of providing regular trips for them.  And, different per-mile transportation costs are 

considered for local and lane movements. In Figure 2, a load originating from node i is 

dispatched through the relay network to its destination at node j, while another load is 

carried PtP from node k to node l. 

 

 
Figure 2: Hybrid Network with RN and PtP Dispatching. 

 

For loads delivered through the RN, a limitation is imposed on the additional mileage 

driven (out-of-route miles) as compared to PtP dispatching.  This limitation is considered 

since carriers wish to reduce out-of-route miles that result in higher costs associated with 

equipment and driver usage.  Thus, alternative routes to deliver a load through the RN 

have to be shorter than the direct movement length between origin and destination plus a 

certain percentage of that amount.  In addition, the number of RPs allowed to be visited 

in each route is also restricted to ensure on-time deliveries as well as a reasonable number 

of trailer exchanges.   

One of the expected benefits of the application of RN dispatching in TL 

transportation is higher equipment utilization.  In addition, requiring equipment balance 

at the nodes in the network is an important restriction that is imposed to minimize the 

number of empty miles driven and facilitate the operational planning activities for 
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carriers.  For PtP loads, a repositioning cost is included on top of the regular 

transportation cost as a surrogate for this constraint. 

Additional operational constraints consider a minimum volume required to justify 

opening a RP based on the level of traffic at a given node and a maximum proportion of 

loads that are allowed to be dispatched PtP.  The latter requirement is established to 

ensure that the benefits of operating the RN in terms of improved driving tours are 

observed for most of the drivers in the company. 

Finally, the biggest challenge associated with R-TLRN-MD deals with the 

requirement that shipments between O-D node pairs need to be satisfied even though 

uncertainty on the number of loads exists. 

 

3 Modeling and Solution Approach 
 
3.1 Model Formulation 
 

In this section, we present a mathematical formulation for R-TLRND-MD that is the 

robust counterpart to the integer programming model developed by Vergara and Root [7] 

for the deterministic case of this problem (TLRND-MD).  The uncertain parameter 

considered was the amount of demand for truckloads between a specific O-D node pair, 

  .  The robust counterpart model was obtained using the Bertsimas and Sim [9] approach 

for robust discrete optimization problems.  Using this approach, we captured the 

fluctuation in the amount of demand for a given O-D pair by using an uncertainty set 

(i.e., a symmetric interval around    such as      ̂      ̂  ).  In addition, the 

Bertsimas and Sim [9] approach seemed reasonable as intuitively all the demands 

between O-D pairs are not likely to change simultaneously.  Based on this notion, a limit 

on the number of O-D pairs with uncertain demand was set to a given number Γ. This 

means that we assumed that among all the coefficients in the nominal (deterministic) 

model that are subject to uncertainty, only Γ of them have  ̂   , while the rest (i.e., the 

O-D pairs with certain demand) have  ̂   .  More details about the application of the 

robust optimization approach to the nominal model are presented in Section 3.2.   

In our formulation, a composite variable is a feasible routing for truckloads that are 

dispatched between an O-D pair that satisfies constraints on local and lane distance, 

maximum percentage of out-of-route miles and maximum number of RPs allowed to be 

visited.  A description of how these composite variables are generated is presented in 

Section 3.3.  

The following notation is used in the formulation of the R-TLRND-MD model which 

is based on the composite variable model for TLRND-MD presented in [7]. 

 

Sets 

  = set of composites r, 

  = set of O-D pairs t with truckload demand, 

  = set of nodes k, 
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   set of O-D pairs t with uncertain truckload demand, S   T, 

   = set of composites r for O-D pair t,     , 

   = set of composites r that visit node k,     . 

 

Parameters 

  = cost of composite r,      , 

   = fixed cost of relay point k,      , 

   = cost of dispatching a truckload for O-D pair t using PtP dispatching,     , 

   = demand for O-D pair t (in number of truckloads),     , 

  = maximum acceptable percentage equipment imbalance, 

  = maximum proportion of truckloads to be dispatched direct PtP, 

  = minimum volume (in number of truckloads) required to open a RP, 

Γ = maximum number of O-D pairs with uncertain demand, |S| ≤ Γ, 

    = -1 if node k is the origin relay point of composite r, 

           1 if node k is the destination relay point of composite r,           , 

           0 otherwise, 

    = 1 if composite r visits relay point k,           , 

          0 otherwise. 

 

Variables 

   = number of composites r used,     , 

   = 1 if a relay point is opened at node k,      , 

        0 otherwise, 

   = number of truckloads sent direct PtP for O-D pair t,     , 

        dual multipliers associated with constraints in TLRND-MD (see reference [7]) 

that include the uncertain parameter,               . 

 

Using the above notation, R-TLRND-MD can be formulated as follows:  

 

min ∑    

   

  ∑  

   

   ∑     

   

 
(1) 

subject to  

∑   

    

         ∑   

   

                (2) 

∑    

    

       ∑   

   

                                          
(3) 

∑   

        

 ∑   

       

   ∑   

        

               (4) 
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∑   

       

 ∑   

        

   ∑   

       

                 (5) 

∑    

   

                                         (6) 

∑  

   

     ∑   

   

   ∑  

   

 
(7) 

           ̂               (8) 

           ̂                          (9) 

            ̂              (10) 

   integer                               (11) 

   {   }                             (12) 

   integer                                  (13) 

                                        (14) 

 

The objective function (1) minimizes the total cost of opening RPs and transporting 

truckloads.  Constraint (2) enforces demand satisfaction for all O-D pairs that have 

truckload demand, either by using the RN or using PtP movements.  This constraint 

incorporates uncertain demand parameters and has been obtained using the procedure that 

is described in Section 3.2.  Constraint (3) enforces the selection of routes that only visit 

open RPs. Constraints (4) and (5) enforce equipment balance at the nodes of the RN. 

Constraint (6) enforces the requirement that a minimum volume is required to open a RP.  

Constraint (7) sets the limitation on the number of PtP load deliveries that are allowed.  

Constraints (8) to (10) result from the application of the robust optimization approach of 

Bertsimas and Sim [9] to the TLRND-MD model in [7] to deal with demand uncertainty.  

The development procedure for these constraints is presented in Section 3.2. Constraints 

(11) to (14) enforce variable-type constraints on the decision variables. 

 

3.2 Application of Robust Optimization Approach 
 

In this section we illustrate how the Bertsimas and Sim [9] procedure for robust 

optimization was applied to obtain the formulation presented in Section 3.1.  Considering 

demand uncertainty as a symmetric interval around the expected value of demand 

     ̂      ̂   required the modification of constraints (2), (3) and (7) in the nominal 

model presented in [7], and also the addition of  more constraints and variables to the 

robust mathematical model.  The first step of the robust optimization approach requires 

modifying the original constraints in the nominal model as follows: 

 

∑   

    

      max
{  {  }          ⌊ ⌋       }

{ ̂  (  ⌊ ⌋) ̂   
}              (2a) 
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∑    

    

   max
{  {  }          ⌊ ⌋       }

{ ̂    (  ⌊ ⌋)( ̂   
  }

                                                          

(3a) 

∑  

   

  max
{  {  }          ⌊ ⌋       }

{ ∑ ̂ 

   

 (  ⌊ ⌋)  ̂   
}   ∑  

   

  (7a) 

 

Then, according to the Bertsimas and Sim [9] robust optimization procedure, the 

inner maximization problems can be written as linear optimization problems as follows: 

 

max   ̂       subject to  ∑   

   

                (2b) 

max [ ̂      ] subject to  ∑   

   

                (3b) 

max [ ∑ ̂ 

   

   ]  subject to                  

 

(7b) 

After defining the dual formulations for the maximization problems presented above, 

we obtained the following minimization problems: 

 

min [    ∑   

   

]  subject to             ̂                   

 

(2c) 

min [    ∑   

   

]  subject to            ̂                     (3c) 

min [    ∑   

   

]            ∑ ̂ 

   

                  (7c) 

 

Finally, the objective functions of (2c), (3c) and (7c) were incorporated to constraints 

(2), (3) and (7) of the nominal model while the associated constraints of (2c), (3c) and 

(7c) were added to obtain the final mathematical formulation of R-TLRND-MD that is 

presented in Section 3.1. 

 

3.3 Solution Approach 
 

A two-step heuristic solution approach was used to solve several instances of R-TLRND-

MD based on previous research by Vergara and Root [7].  In the first step, composite 

variables representing feasible routes for truckloads and empty movements between O-D 
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pairs using the relay network were generated.  In the second step, the generated 

composite variables were used to solve the integer programming formulation presented in 

Section 3.1.   

For the generation of composite variables for loaded movements, an algorithm was 

developed to enumerate all feasible routes that satisfied the following constraints: 

maximum percentage of out-of-route miles allowed (β), maximum local and lane 

distances allowed (γ1 and γ2) and maximum number of RPs allowed to be visited.  A set 

of templates was developed for the enumeration algorithm considering 1, 2 and 3 RPs 

visited in a route.  Figure 3 shows an example of how a feasible route is determined using 

a pre-specified template, where SPij is the shortest path (PtP) distance between nodes i 

and j.  The main advantage of a composite variable formulation approach is to avoid 

incorporating these difficult operational constraints in the mathematical formulation; 

however this results in a very large number of composite variables that need to be 

generated.  For this reason, based on preliminary experimentation with the model, a set of 

four templates (i.e., those with 3 RPs) that did not produce composites selected in the 

optimal solution were eliminated.  Figure 4, shows the final set of templates used to 

generate composite variables in this research.  

 
i j

dik≤ϒ1

dkl≤ϒ2

dlj≤ϒ1
k l

dij ≤ SPij (1+β)  
 

Figure 3: Example of Composite Variable Generation Using a Template with Two RPs. 

 

 
 

Figure 4: Templates Used for Composite Generation. 

 

2 nodes

3 nodes

4 nodes
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Since reducing the number of templates resulted in a significant reduction in the 

number of variables, the implementation of the mathematical model presented in Section 

3.1 using the generated subset of composites was equivalent to solving a reduced version 

of the complete problem.  The resulting reduced model was solved using the optimization 

software CPLEX which implements a standard branch-and-cut solution approach to be 

able to obtain high quality solutions in reasonable computation times.  This approach was 

proven to generate solutions within an optimality gap of 1% in [7]. 

 

4 Computational Experiments 
 
In this section, we present the results of several computational experiments that were 

completed to assess the performance of the proposed R-TLRN-MD model and to show 

how robust solutions are compared to deterministic solutions obtained with the nominal 

model without demand uncertainty.  

 

4.1 Generation of Instances and Selection of Parameter Values 
 

We generated 10 instances of complete networks with 25 and 50 nodes, respectively.  

Using a normalized scale, nodes were uniformly distributed in a squared area of 1x1.  

Similarly, O-D node pairs with truckload demand were randomly selected to achieve 

densities of 10% and 20% with respect to the total number of existing O-D pairs in the 

network.  As such, 60 and 120 O-D pairs were selected for 25 node networks while 245 

and 490 O-D pairs were selected for 50 node networks.  In addition, the expected 

truckload demand between each O-D pair was randomly generated considering a uniform 

distribution between 10 and 20 truckloads.   

Three different uncertainty levels were considered in our experiments.  We evaluated 

cases where 25%, 50% and 100% of all O-D pairs had uncertain truckload demand.  For 

example, in the case with 60 O-D pairs with truckload demand, the 25% uncertainty level 

corresponds to a scenario with 15 O-D pairs with an uncertain amount of demand.  A 

scenario with zero uncertainty level is equivalent to the deterministic scenario and it is 

assumed as the base model for comparisons.  Additionally, for the uncertain demand 

scenarios, demand was assumed to fluctuate uniformly in symmetric intervals of length 

±10%, ±25% and ±100% from the expected value of demand for uncertain O-D pairs.  

These interval lengths were used to evaluate different levels of severity of demand 

uncertainty.  For example, if the expected value of demand for an O-D pair is 20, a ±
10% fluctuation results in an interval between 18 and 22.   

Other parameters were held constant across all instances solved and include the 

limitations on local and lane distances for RN movements, percentage of out-of-route 

miles and number of RPs allowed to be visited in a RN route, equipment imbalance 

allowed, minimum volume required to open RPs and maximum proportion of PtP loads 

as well as fixed RP installation and variable transportation costs.  Table 2 shows the 

values used for these parameters. 
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Table 2: Fixed Parameter Values Used in Computational Experimentation. 
Parameter Value 

Local distance limitation (distance units) 0.3 

Lane distance limitation (distance units) 0.5 

Maximum percentage of out-of-route miles allowed 0.25 

Number of RPs allowed to be visited 3 

Equipment imbalance allowed 0 

Minimum volume required to open RPs (as a percentage of total volume) 0.01 

Maximum proportion of PtP loads allowed 1 

Fixed installation cost of RPs (cost units) 10 

Per-mile local transportation cost (cost units) 1 

Per-mile lane transportation cost (cost units) 1.3 

Per-mile PtP transportation cost (cost units) 1.5 

 

4.2 Results 
 
The composite generation algorithm and the R-TLRND-MD model were implemented in 

Python 2.7, while solutions for the computational experiments were obtained for both 

deterministic and uncertain instances using CPLEX 12.2 on a 2.53 GHz Intel® Core™2 

Duo with 4 GB of memory.   

The performance measures used to assess the effect of uncertainty in the design of the 

network and the performance of the robust model and solution approach were solution 

value, number of RPs open, setup time, solution time and total time.  Additionally, 

instances were characterized considering number of composites, number of additional 

variables in uncertain scenarios, number of constraints and number of truckloads.  All of 

the values presented for these measures in the following tables are averages of ten 

instances with some exceptions where noted due to infeasibilities in some of the 

uncertain demand scenarios.  

Table 3 shows the results obtained for the deterministic case when 25 node networks 

with 10% and 20% O-D pair density were considered.  The deterministic case represented 

a baseline scenario for comparison with respect to the robust solutions obtained for the 

uncertain demand scenarios.  As shown in Table 3, all measures for 20% O-D pair 

density were higher than the ones associated with 10% O-D pair density.  Solution value 

and number of RPs were affected by the larger O-D pair density given the significant 

increase in the number of truckloads that needed to be transported.  It is also important to 

note that although there was a significant increase in the number of composite variables 

and constraints in the case with 20% O-D pair density, solution time remained the same 

on average.  However, the larger problem instances affected the setup time required to 

generate composites and construct the model for CPLEX to solve.   
  

http://www.intel.com/products/processor/core2duo/
http://www.intel.com/products/processor/core2duo/
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Table 3: Results for 25 Node Networks with Deterministic Demand (Baseline Scenario). 
Number 

of O-D 

Pairs 

Number of 

Composites 

Number of 

Constraints 

Number of 

Truckloads 

Solution 

Value 

(units) 

Number 

of RPs 

Open 

Setup 

Time 

(sec.) 

Solution 

Time 

(sec.) 

Total 

Time 

(sec.) 

60  

(10%) 
229.50 342.70 889 1005.60 11.90 0.62 0.14 0.76 

120 

(20%) 
470.40 597.30 1749 1813.03 14.90 1.06 0.14 1.20 

 

4.2.1 Demand Uncertainty Effect 
 

Tables 4 and 5 show the results considering demand uncertainty for 25 node networks 

with 10% and 20% O-D pair density, respectively.  Uncertainty level (i.e., number of O-

D pairs with uncertain demand) and the amount of fluctuation with respect to the 

expected value (i.e., demand change) were varied to analyze the impact of these factors 

on the performance measures.  The percentage or actual differences of these measures 

with respect to the baseline scenario are shown in parentheses.  It is important to note that 

the number of composites under each combination of factors in the uncertain scenarios 

did not differ from the deterministic case since the feasibility of routes was not affected 

by changes in the quantity of the demand between O-D pairs.  For this reason, the number 

of composites is not included in Tables 4 and 5.  Only the additional variables that were 

created from the application of the robust optimization approach explained in Section 3.2 

are included instead.  Additionally, total solution time was not included in the following 

tables as it can be easily obtained by adding together setup and solution time.  

 

Table 4: Results for 25 Node Networks and 10% O-D Pair Density with Uncertain 

Demand. 
Demand 

Change 

(%) 

Uncertain 

O-D 

Pairs 

Add’l 

Vars 

Number of 

Constraints 

Number of 

Truckloads 

Solution 

Value 

(units) 

Number 

of RPs 

Open 

Setup 

Time 

(sec.) 

Solution 

Time 

(sec.) 

Infeasible 

Instances 

±10 

15 48 
660.7 

(+92.8 %) 

918 

(+3.3 %) 

1127.63 

(+12.1 %) 

20.5 

(+8.6) 

0.73 

(+17.7 %) 

0.16 

(+14.3 %) 
0 

30 93 
1083.70 

(+216.2%) 

946 

(+6.4%) 

1193.23 

(+18.7%) 

23.30 

(+11.4) 

0.87 

(+40.3%) 

0.10  

(-28.6%) 
0 

60 183 
1914.70 

(+458.7%) 

1004 

(+12.9%) 

1285.23 

(+27.8%) 

24.20 

(12.3) 

1.24 

(+100%) 

0.16 

(+14.3%) 
0 

±25 

15 48 
660.70 

(+92.8%) 

952 

(+7.09%) 

1187.60 

(+18.1%) 

20.5 

(+8.6) 

0.73 

(+17.7%) 

0.14  

(-) 
0 

30 93 
1083.70 

(+216.2%) 

1014 

(+14.1%) 

1303.97 

(+29.7%) 

23.30 

(+11.4) 

0.83 

(+33.9%) 

0.12 

(-14.3%) 
0 

60 183 
1914.70 

(+458.7%) 

1137 

(+27.9%) 

1494.86 

(+48.6%) 

24.2 

(+12.3) 

1.21 

(+95.2%) 

0.15 

(+7.1%) 
0 

±100 

15 48 
709 

(+106.9%) 

1116 

(+25.5%) 

1469.25 

(+46.1%) 

20.33 

(+8.4) 

0.78 

(+25.8%) 

0.11 

(-21.4%) 
7 

30 93 - - - - - - 10 

60 183 - - - - - - 10 
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Table 5: Results for 25 Node Networks and 20% O-D Pair Density with Uncertain 

Demand. 

Demand 

Change 

(%) 

Uncertain 

O-D 

Pairs 

Add’l 

Vars 

Number of 

Constraints 

Number of 

Truckloads 

Solution 

Value 

(units) 

Number 

of RPs 

Open 

Setup 

Time 

(sec.) 

Solution 

Time 

(sec.) 

Infeasible 

Instances 

±10 

30 93 
1344.3 

(+125.1%) 

1808 

(+3.4%) 

1974.76 

(+8.9%) 

23.2 

(+8.3) 

1.30 

(+22.6%) 

0.18 

(+28.6%) 
0 

60 183 
2169.30 

(+263.2%) 

1865 

(+6.6%) 

2077.00 

(+14.6%) 

24.30 

(+9.4) 

1.70 

(+60.4%) 

0.19 

(+35.7%) 
0 

120 363 
3780.88 

(+533%) 

1978 

(+13.1%) 

2303.01 

(+27%) 

24.62 

(+9.7) 

2.74 

(+158.5%) 

0.25 

(+78.6%) 
2 

±25 

30 93 
1344.30 

(+125.1%) 

1873 

(+7.1%) 

2076.93 

(+14.6%) 

23.20 

(+8.3) 

1.30 

(+22.6%) 

0.18 

(+28.6%) 
0 

60 183 
2169.30 

(+263.2%) 

1996 

(+14.1%) 

2284.93 

(+26%) 

24.30 

(+9.4) 

1.69 

(+59.4%) 

0.17 

(+21.4%) 
0 

120 363 
3780.87 

(+533%) 

2228 

(+27.4%) 

2702.19 

(+49%) 

24.62 

(+9.7) 

2.70 

(+154.7%) 

0.21 

(+50%) 
2 

±100 

30 93 
1345.6 

(+125.3%) 

2201 

(+25.8%) 

2947.46 

(+62.6%) 

23 

(+8.1) 

1.30 

(+22.6%) 

0.15 

(+7.1%) 
5 

60 183 - - - - - - 10 

120 363 - - - - - - 10 

 

As Tables 4 and 5 show, solution value and number of open RPs increased as 

compared to the deterministic case in all instances with uncertain demand.  Even though 

a larger number of RPs were opened as more O-D pairs with uncertain demand were 

present, the effect seems to be more significant for the case with lower O-D pair density 

(10% or 60 O-D pairs with truckload demand).  Interestingly, no difference was observed 

for different levels of fluctuation of the demand across instances with the same number of 

uncertain O-D pairs.  The higher volume of loads in the network for scenarios under 

uncertainty can explain the higher number of RPs in these scenarios.  Our observations of 

the robust network designs showed that nodes that did not meet the minimum volume of 

loads required to justify using them as RPs in the deterministic scenario were actually 

able to meet that requirement after incorporating uncertainty and allowing a higher load 

volume. 

As more truckloads were dispatched in uncertain demand instances as compared to 

the deterministic case, and more RPs were opened, the solution value for uncertain 

instances also increased.  Solution values were larger as more uncertain O-D pairs were 

present and more fluctuation with respect to the expected demand was considered.  The 

changes in solution value seem to be the result of more RPs and larger transportation 

costs that result from more truckloads being dispatched, especially as larger fluctuations 

were considered.  However, similar to the number of open RPs, the uncertainty effect on 

solution value seems to be more significant for the cases with lower O-D pair density 

(10% or 60 O-D pairs with truckload demand).  It is important to note that the proportion 

of loads that were dispatched PtP remained the same when comparing deterministic and 
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robust solutions.  This means that uncertainty doesn’t seem to have a significant effect on 

the selection of the dispatching mode that is used to satisfy the demand.  Moreover, 

another interesting observation from our experiments relates to the distribution of the 

shipments between O-D pairs that use the RN.  In the deterministic case, almost all O-D 

pairs were served using only one feasible route (i.e., composite variable); however in the 

cases under uncertainty, shipments were split among several feasible routes from origin 

to destination for most O-D pairs served through the RN.  

In terms of model performance, solution time increased as the number of O-D pairs 

with uncertain demand increased, but no significant difference was observed from one 

fluctuation level to another.  In general, this can be attributed to a significant increase that 

was observed in the number of constraints needed in our proposed model when a higher 

level of uncertainty was considered.  Although the number of composites was not 

affected by incorporating uncertainty, the increase in the number of constraints and 

additional variables imposed by the robust optimization approach explain the longer 

solution times in scenarios with larger uncertainty, especially in the case with higher O-D 

pair density (20% or 120 O-D pairs with truckload demand).  Still, the largest average 

solution time was under 3 seconds. 

Another observation from our computational experiments relates to the 

infeasibilities that occurred for instances with more uncertain demand O-D pairs and 

larger fluctuations from the expected demand value.  The latter factor had a more 

significant effect in the case with higher O-D pair density (20% or 120 O-D pairs with 

truckload demand).  Figure 5 shows how the boundaries of a nominal (i.e., deterministic) 

problem fluctuate due to demand uncertainty and form a new feasible region (shown in 

grey) that is robust against any realization of the uncertain demand when the robust 

optimization approach used in this research is applied.  In this case, the objective value 

for the robust model is worse than the nominal one as observed in Figure 5.  In terms of 

our research problem, if we assume a large number of O-D pairs with uncertain demand 

(i.e., higher uncertainty level) and a large fluctuation with respect to the expected value, it 

might be reasonable to suggest that no feasible region might exist that satisfies all the 

constraints in the robust formulation. 

 
Figure 5: Nominal and Robust Boundaries in a Problem with Right-Hand Side 

Coefficient Uncertainty. 
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4.2.2 Network Size Effect 
 

In our computational experimentation, we increased the number of nodes in the network 

to assess the effect of network size on the robust solutions obtained with our proposed 

model and solution approach and compare them to the deterministic case.  Table 6 shows 

the results for the baseline scenario with no uncertainty.  Similar to the 25 node network 

results presented in Table 3, reasonable solution times were observed for both 10% and 

20% O-D pair density instances. 
 

Table 6: Results for 50 Node Networks with Deterministic Demand. 

Number 

of O-D 

Pairs 

Number of 

Composites 

Number of 

Constraints 

Number of 

Truckloads 

Solution 

Value 

(units) 

RPs 

Open 

Setup 

Time 

(sec.) 

Solution 

Time 

(sec.) 

Total 

Time 

(sec.) 

245 

(10%) 
2732 1990.40 3594 3036.02 23.7 6.08 0.95 7.03 

490 

(20%) 
6063 4034.30 7133 5467.69 29 12.09 2.18 14.27 

 

Tables 7 and 8 show the results for scenarios with demand uncertainty for 50 node 

networks with 10% and 20% O-D pair density, respectively.  The percentage or actual 

difference from the deterministic case is shown in parentheses. 
 

Table 7: Results for 50 Node Networks and 10% O-D Pair Density with Uncertain 

Demand. 

Demand 

Change 

(%) 

Uncertain 

O-D 

Pairs 

Add’l 

Vars 

Number of 

Constraints 

Number of 

Truckloads 

Solution 

Value 

(units) 

Number 

of RPs 

Open 

Setup 

Time 

(sec.) 

Solution 

Time 

(sec.) 

Infeasible 

Instances 

±10 

61 186 
5087.50 

(+155.6%) 

3709 

(+3.2%) 

3327.13 

(+9.6%) 

48.75 

(+25) 

7.29 

(+19.9%) 

0.99 

(+4.2%) 
2 

122 369 
8324.80 

(+318.2%) 

3826 

(+6.4%) 

3514.06 

(+15.7%) 

50 

(+26.3) 

8.70 

(+43.1%) 

1.19 

(+25.3%) 
5 

245 738 
14720.80 

(+639.6%) 

4059 

(+12.9%) 

3762.24 

(+23.9%) 

50 

(+26.3) 

12.76 

(+109.9%) 

1.07 

(+12.6%) 
5 

±25 

61 186 
5087.5 

(+155.6%) 

3842 

(+6.9%) 

3480.87 

(+14.6%) 

48.75 

(+25) 

7.17 

(+17.9%) 

0.78  

(-17.9%) 
2 

122 369 
8324.80 

(+318.2%) 

4088 

(+13.7%) 

3825.07 

(+26%) 

50 

(+26.3) 

8.57 

(+41%) 

0.95  

(-) 
5 

245 738 
14692.25 

(+638.1%) 

4585 

(+27.6%) 

4420.89 

(+45.6%) 

50 

(+26.3) 

12.68 

(+108.5%) 

1.08 

(+13.7%) 
6 

±100 

61 186 
5142 

(+158.3%) 

4486 

(+24.8%) 

5475.83 

(+80.4%) 

48.33 

(+24.6) 

7.37 

(+21.2%) 

0.79  

(-16.8%) 
4 

122 369 - - - - - - 10 

245 738 - - - - - - 10 
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Table 8: Results for 50 Node Networks and 20% O-D Pair Density with Uncertain 

Demand. 

Demand 

Change 

(%) 

Uncertain 

O-D 

Pairs 

Add’l 

Vars 

Number of 

Constraints 

Number of 

Truckloads 

Solution 

Value 

(units) 

Number 

of RPs 

Open 

Setup 

Time 

(sec.) 

Solution 

Time 

(sec.) 

Infeasible 

Instances 

±10 

122 369 
10322 

(+155.9%) 

7368 

(+3.3%) 

5854.39 

(+7.1%) 

49.55 

(+20.5) 

14.82 

(+22.6%) 

2.21 

(+1.4) 
1 

245 738 
16758.56 

(+315.4%) 

7604 

(+6.6%) 

6101.04 

(+11.6%) 

49.89 

(+20.9) 

19.38 

(+60.3%) 

2.36 

(+8.3%) 
1 

490 1473 
29523.29 

(+631.8%) 

8070 

(+13.1%) 

6504.06 

(+18.9%) 

50 

(+21) 

33.35 

(+175.8%) 

2.78 

(+27.5%) 
3 

±25 

122 369 
10352.75 

(+156.6%) 

7627 

(+6.9%) 

6052.53 

(+10.7%) 

49.5 

(+20.5) 

14.89 

(+23.1%) 

2.48 

(13.8%) 
2 

245 738 
16794.37 

(+316.3%) 

8108 

(+13.7%) 

6550.62 

(+19.8%) 

49.875 

(+20.9) 

19.34 

(+60%) 

2.08  

(-4.6%) 
2 

490 1473 
29523.28 

(+631.8%) 

9100 

(+27.6%) 

7544.21 

(+38%) 

50 

(+21) 

33.56 

(+177.6%) 

2.61 

(+19.7%) 
3 

±100 

122 369 
10341.14 

(+156.3) 

8931.71 

(+25.2) 

10442.44 

(+91%) 

49.57 

(+20.6) 

14.67 

(+21.3%) 

1.58  

(-27.5%) 
3 

245 738 - - - - - - 10 

490 1473 - - - - - - 10 

 

In general, as shown in Tables 7 and 8, the results obtained for 50 node networks 

follow the same trends discussed for the experiments with 25 node networks (Tables 4 

and 5). However, it is important to note that for the problems with 50 node networks, 

almost all nodes in the network were selected to be open as RPs as soon as uncertainty is 

incorporated in the model.  This seems to be a result of having more truckloads being 

dispatched and having more nodes satisfy the minimum volume required to open RPs.  

Also, demand uncertainty seems to affect smaller network instances more than larger 

instances in terms of solution value.  This might be an indication that as the size of the 

network increases, higher levels of demand uncertainty seem to have a reduced marginal 

effect on the costs of the system.  In addition, although setup times were affected by more 

truckloads and additional variables due to the uncertainty associated with more O-D 

pairs, solutions were still obtained in less than one minute in average for each instance.  

Finally, the main difference between these results and the ones for 25 node networks is 

that for the larger network size instances, the fraction of instances that are infeasible 

increased.  

 

4.2.3 Fixed RP Installation Cost Effect 
 

Although our computational experiments originally considered a fixed installation cost 

for RPs (e.g., 10 cost units per RP), the observed result of a large number of open RPs in 

the network for scenarios involving uncertainty led us to investigate the impact of higher 

fixed installation costs on the number of RPs. Three scenarios considering 20, 50 and 100 
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cost units for the fixed RP installation cost were solved under all the previous 

combinations of factors.  The results obtained did not show a significant difference with 

respect to the original results with a fixed RP installation cost of 10 cost units, especially 

for highly uncertain scenarios.  Based on these observations we concluded that the large 

amount of loads to be dispatched in uncertain instances somewhat explains opening as 

many RPs as possible regardless of their installation cost.  This hypothesis merits 

additional research as we pursue alternative solution approaches to solve larger instances 

of R-TLRND-MD.  

 

5 Conclusions 
 

This paper presents a robust optimization formulation and solution approach for the 

Robust Truckload Relay Network Design with Mixed Fleet Dispatching (R-TLRND-

MD) problem.  To the best of our knowledge, this is the first paper in which a robust 

optimization approach is used to find a solution to the strategic relay network design 

problem in TL transportation when demand uncertainty is explicitly considered.  The 

mathematical model presented in this research applies the Bertsimas and Sim [9] robust 

optimization approach to the mathematical formulation presented by Vergara and Root in 

[7].  Computational experiments were completed to assess the performance of the model 

and solution approach and to develop insights with respect to uncertainty effects on the 

cost of the system and the design of the resulting hybrid dispatching networks for TL 

transportation that are obtained with this approach.   

Since the robust model considers the worst case value of demand for a subset of 

uncertain O-D pairs with truckload demand, a significant number of additional loads is 

added to the network which results in more traffic at the nodes.  As the proportion of 

truckloads that are dispatched PtP remains at the same level regardless of the uncertainty 

level, more truckloads in the system result in opening more RPs for truckloads that are 

dispatched through the RN since more volume flowing through the nodes justifies the 

installation of the RPs.  Looking at individual instances, it was observed that no RPs 

selected in the deterministic case were modified in the robust case, only new ones were 

added to the RN.  Moreover, demand uncertainty led to splitting RN shipments among 

several feasible routes from origin to destination.   

Although the number of RPs increases as uncertainty is incorporated, the effect is 

more significant as the level of uncertainty increases in terms of more O-D pairs with 

uncertain demands and more fluctuation with respect to the expected demand (i.e., cases 

with higher conservatism).  More RPs and more loads to be dispatched result in higher 

solution values as installation and transportation cost increase.  However, the effect of 

different levels of uncertainty seems to have a more significant effect on instances with 

fewer nodes. 

The tractability of the robust model indicates the ability of the proposed approach to 

obtain solutions that remain feasible against all demand values in a pre-specified interval 

of fluctuation in reasonable computation times.  However, considering the worst case 
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value of demand affects the feasibility of instances with higher levels of uncertainty.  As 

discussed in Section 4, the robust approach modifies the solution space of the 

optimization problem to ensure hedging against any demand realization.  This behavior 

of the robust approach makes it more difficult to find a feasible region for the problem.   

 

6 Future Work 
 

Several limitations of the current research can be explored as future work in addition to 

other extensions of the TLRND-MD problem that still incorporate the uncertain nature of 

the TL industry.  First, as relatively small networks are studied in this paper, the 

development of efficient heuristic approaches that enable us to solve more realistic 

network sizes would be an interesting area of future research.  Another research direction 

would be to consider other parameters within the TLRND-MD problem to be uncertain 

such as installation and transportation costs.  Also, exploring other approaches of robust 

optimization for both modeling approach and general uncertainty set definition (e.g., 

ellipsoidal uncertainty sets) is another interesting area of study.   

Considering that probability distributions can be obtained to represent demand 

uncertainty, stochastic optimization is another procedure that can be used to address input 

data uncertainty.  Implementing stochastic optimization techniques in the TLRND-MD 

problem under uncertainty is also another direction of future work. 

Finally, it would be interesting to explore the applicability of the approach used in 

this research in other contexts where relay networks are designed under an uncertain 

environment such as in telecommunications and sensor networks.  
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